Chat with us, powered by LiveChat
Shopping Cart

No products in the cart.

How long does it take for a home

energy storage system to pay for itself?

The BR-OW-V 14.3KWH battery is a standout example of the safe and durable energy storage solutions provided by lithium iron phosphate (LiFePO4) technology. Known for its robust safety features, LiFePO4 batteries are less prone to overheating and are thus safer than other common lithium-ion batteries. They boast a significantly long cycle life, often exceeding 6000 cycles at 80% depth of discharge, ensuring reliable performance over many years.

These batteries operate effectively across a broad temperature range, which makes them suitable for various environmental conditions without compromising safety or efficiency. The built-in Battery Management System (BMS) further enhances this safety by preventing overcharge, over-discharge, and overheating, thus maintaining optimal conditions for extended battery life and performance  .

Case Study: Household Energy Savings in Germany

Scenario:

Consider a typical family home in Germany that consumes an average of 800 kWh per month. The family aims to reduce their electricity bills by utilizing the BR-OW-LV 14.3KWH battery to store energy during off-peak hours (when electricity is cheaper) and use it during peak hours (when it is more expensive).

Cost Calculation:

  1. Purchase Price: $2249
  2. Electricity Prices
  • Peak Price: 86.2 €/MWh (approximately $94.44/MWh)
  • Off-Peak Price: 63.7 €/MWh (approximately $69.85/MWh)

Scenes to be used:

  • The battery is used to store energy during off-peak hours and discharge during peak hours.
  • The battery capacity is 14.3 kWh.
  • Daily cycling (charge/discharge once a day).
  • Electricity Consumption during Peak Hours: 40% of daily use
  • Electricity Consumption during Off-Peak Hours: 60% of daily use
  • Daily Energy Shifted to Peak Hours using Battery: 14.3 kWh (full battery capacity used daily)

Daily Savings Formula mathematical model :

Daily Savings=(Peak Price−Off-Peak Price)×Battery CapacityDaily Savings=(Peak Price−Off-Peak Price)×Battery Capacity

Daily Savings=($94.44/MWh−$69.85/MWh)×14.3kWh

Daily Savings=$5.03

Payback Period:

Payback Period=Purchase Price/ Daily Savings

2249/5.03=447 DAYS

Annual Savings Calculation:

Annual Savings=$5.03×365 days

Annual Savings=$1,835.95

This case study demonstrates that by effectively utilizing the battery storage system, So, it takes approximately 447 days, or about 1.2 years, to recover the investment through daily savings, assuming optimal use of the battery for shifting energy consumption from peak to off-peak hours ,the family can save approximately $1,835.95 annually by shifting their energy usage to more economical hours. 

Additional Advantages Beyond Cost Savings

Enhanced Energy Independence:

Using the BR-OW-LV 14.3KWH battery allows households and businesses to become less dependent on grid electricity. This is particularly valuable during power outages or in regions with unstable grid infrastructure.

Improved Energy Management:

Integrated smart systems in modern batteries enable more efficient energy management. These systems can predict energy usage patterns and optimize charging and discharging cycles accordingly, which maximizes the utility and lifespan of the battery.

Potential Incentive and Rebates:

Many regions offer financial incentives for installing renewable energy solutions and storage systems, which can further reduce the initial cost of purchasing a battery system.

Environmenta Impact:

Battery storage systems contribute significantly to reducing carbon footprints by enabling more efficient use of renewable energy. Storing excess solar or wind energy reduces reliance on fossil fuels and decreases greenhouse gas emissions, supporting global efforts in combating climate change. This aligns with environmental sustainability goals and can enhance the green credentials of a home or business.

Leave a Reply

Your email address will not be published. Required fields are marked *